Related Solar Imaging and Near-Earth In-situ Observations of an ICME A. N. Fazakerley¹, L.K. Harra¹, <u>J.L. Culhane</u>¹, L. van Driel-Gesztelyi^{1, 4, 5}, E. Lucek², S.A. Matthews¹, C.J. Owen¹, C. Mazelle³, A. Balogh² and H. Rème³. ¹Mullard Space Science Laboratory, University College London ²Imperial College, London ³Centre d'Etude Spatiale des Rayonnements, Toulouse also at ⁴Observatoire de Paris, Meudon and ⁵Konkoly Observatory, Budapest Recently published by Fazakerley et al in GRL, 2005 ### 1. Solar Remote Sensing Observations GOES 10: X-ray **Light Curves** We focussed on three events: A: M class flare B: Long duration C class flare ⇒ *related to the ICME* C: Series of three flares (GOES M - M - C) class (left) EIT 195 Å image of **Flare B** showing coronal arcade loops (right) EIT difference image showing "dimming regions" and aligned filament channel ### SOHO: LASCO Halo CME associated with Flare B #### **SOHO: LASCO** Cone Model: (Michalek et al, 2003) Estimation of CME speed, (V ~ 910 km/s), cone axis orientation, point of origin, using LASCO first/last detections of CME crossing the limb 2. Near Earth Observations: ACE, SOHO, Genesis, Cluster & Double Star TC-1 ### ACE: # Magnetic Field Instrument (MFI) Jan 15 to Feb 15 2004 No shocks for a week before 22nd Jan Significant magnetic storm at Earth 2004 JAN ### **LUCL** ### Cluster: FGM, CIS ## Shock Normal Determination Spacecraft in 200 km tetrahedron Data resolution 22 vec s⁻¹ Shock normal in the GSE frame (Cluster timing analysis) \underline{n} =[0.905, -0.313, -0.288] tilted **at 25**° to the Sun-Earth line This is consistent with the main body of the ejecta passing south and dawnward of the Earth Shock speed in the GSE frame: → 740 km s⁻¹ along the shock normal #### 3. Combined Data Sets #### **Coronal Magnetic Fields** Magnetic polarity from MDI Coronal arcade from EIT Orientation of flux rope can be determined from these data (Martin, 2003) ## **Near-Earth Magnetic Fields** Before 01:35 Solar Wind 01:35 - 08:30 "sheath" 08:30 - 10:40 ICME Part (i) 10:40 & after ICME Part (ii) #### Interpretation: Flux rope (NNE-SSW orientation) erupts seen as ICME Part (ii) Overlaying coronal arcade material (E-W orientation) carried ahead of flux rope - seen as ICME Part (i) **L** #### **SOHO:** LASCO Expanding CME magnetic field reconnects with oppositely directed streamer field to produce open field-lines - temporary disconnection from Sun allows uni-directional electron streaming ### **Summary** - ICME seen near-Earth Jan 22nd 2004 - Unambiguous identification of coronal source event (erupting flux rope) - Determination of coronal magnetic fields - Good match to in-situ magnetic fields - The geomagnetic storm may have been predictable - More effort needed on ICME interaction in IPM ### **END OF TALK**